EDUCATION NEWS: LEARNING STYLES

For decades, educators have been told that they must adapt their teaching to the specific learning styles of individual students. Is that true? What does the research tell us?

In 2008, Harold Pashler at the University of California, San Diego, and his team set out to test the hypothesis that learners have distinct styles in which they learn best. What they found is that “at present, there is no adequate evidence base to justify incorporating learning-styles assessments into general education practice” (Pashler et al. 2008)

While students do have preferences, attempts to adapt teaching to match learning styles has no significant impact.

What’s a Health Science Teacher to do?

Align instruction to the intended learning outcome. The best way to learn CPR is to practice CPR – regardless of learning preference. The only way to know if students can successfully pronounce medical terms is to listen to them pronouncing the terms. Align strategies with what you want the student to know and be able to do, and to the learner’s recent performance or experience - and not on an assessment of their learning styles.
Are your students prepared to succeed in a value-based system?

It’s not an option. Not really. Today’s students are entering a healthcare arena that is changing at a seemingly faster pace each passing day.

Healthcare reform legislation is raising the bar when it comes to improved quality and affordability of care. Your students will play a pivotal role in improving the quality of patient care and the patient experience.

The traditional fee-for-service payment model gives an incentive for physicians to provide more treatments because payment is dependent on the quantity of care.

A value-based payment model provides a different approach.

QUALITY over QUANTITY

In next month’s newsletter, we’ll take a closer look at the role of EVERYONE in healthcare when it comes to providing value-based care.

Tips for Teachers:

1. You can turn just about any activity into a game. Divide the class into teams. Recognize the fastest, or the team with the highest combined score, or the team that answers the most questions.

2. Make sure your game is not too easy and not too difficult. Students will only work hard if they think there is a chance for them to win. If not, they’ll give up!

3. Allow students to work in teams whenever possible.

4. Focus on intrinsic rewards. Occasionally you may want to use tangible rewards, but for the most part, use praise and recognition for students who win classroom games.

Suffixes: Clever Combos

Have students work in pairs. Give them 10 minutes to guess as many suffixes as they can. Recognize the team that writes down the most correct answers.

Playing to Learn

Students take pleasure in solving problems. When they solve a problem, their brains may reward them with a small dose of dopamine.

Students also take pleasure in competition. A chance to compete encourages extra effort and motivates the student to try harder.

Problem-Solving = Rewarding

Competition = Motivating

Most Health Science teachers agree that game-based learning strategies involving problem-solving and competition can be great learning tools. Check out these tips for increasing the opportunity for playing to learn in your classroom.
Listed below are groups of three unrelated word parts. Can you find a suffix that fits after each term in the group?

<table>
<thead>
<tr>
<th>Sample</th>
<th>appendic</th>
<th>tonsill</th>
<th>hepat</th>
<th>-itis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>psych</td>
<td>dermat</td>
<td>physi</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>lymph</td>
<td>tox</td>
<td>fibr</td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>poly</td>
<td>dys</td>
<td>hemat</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>alcohol</td>
<td>metabol</td>
<td>catabol</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>acid</td>
<td>tubercul</td>
<td>phagocyt</td>
<td></td>
</tr>
<tr>
<td>6.</td>
<td>melano</td>
<td>leuko</td>
<td>megakaryo</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>pan</td>
<td>epi</td>
<td>en</td>
<td></td>
</tr>
<tr>
<td>8.</td>
<td>micro</td>
<td>ophthalmo</td>
<td>endo</td>
<td></td>
</tr>
<tr>
<td>9.</td>
<td>ortho</td>
<td>endo</td>
<td>perio</td>
<td></td>
</tr>
<tr>
<td>10.</td>
<td>homo</td>
<td>hypo</td>
<td>normo</td>
<td></td>
</tr>
<tr>
<td>11.</td>
<td>melan</td>
<td>hemat</td>
<td>lip</td>
<td></td>
</tr>
<tr>
<td>12.</td>
<td>homeo</td>
<td>hemo</td>
<td>meta</td>
<td></td>
</tr>
<tr>
<td>13.</td>
<td>ameno</td>
<td>dysmeno</td>
<td>pyo</td>
<td></td>
</tr>
<tr>
<td>14.</td>
<td>hyperglyc</td>
<td>an</td>
<td>polycyth</td>
<td></td>
</tr>
<tr>
<td>15.</td>
<td>ortho</td>
<td>dys</td>
<td>hyper</td>
<td></td>
</tr>
<tr>
<td>16.</td>
<td>angio</td>
<td>mammo</td>
<td>rhino</td>
<td></td>
</tr>
<tr>
<td>17.</td>
<td>neur</td>
<td>odont</td>
<td>my</td>
<td></td>
</tr>
<tr>
<td>18.</td>
<td>colono</td>
<td>laparo</td>
<td>cysto</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>psycho</td>
<td>patho</td>
<td>spermato</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>hemi</td>
<td>para</td>
<td>quadri</td>
<td></td>
</tr>
</tbody>
</table>
SHOULD YOU SPACE OUT?

Most teachers believe that cramming for an exam is not a good strategy for learning. Cramming is an example of massed practice. It may feel productive, but the long term benefits are not there.

Compare massed practice to spaced out practice. Spaced out practice feels less productive because forgetting has begun to set in and you must work harder to recall the concepts.

Are there learning benefits to spaced out classroom instruction?

Research Study: Microsurgery

- 38 surgical residents
- Four lessons: how to reattach tiny vessels (instruction and practice)
- ½ residents - all four lessons in a single day
- ½ residents - one week interval between each lesson

Who did better one month after the last lesson?

The spaced lesson group significantly outperformed their colleagues in all areas:

- Elapsed time to complete surgery
- Number of hand movements
- Success at reattaching severed, pulsating aortas of live rats

16% of the single day residents damaged the rat’s vessels beyond repair!

Why was spaced learning and practice more effective?

- With spaced practice, relearning embeds content in long-term memory and connects it to prior learning. The process of forgetting and then relearning makes the knowledge more durable. The increased effort required to retrieve the learning after a little forgetting further strengthens the memory.
- Rapid-fire practice leans on short-term memory. As forgetting sets in, there is no opportunity to retrieve the learning and consequently, it becomes lost.

The Health Science Educator, published by CreativEd Services in collaboration with NCHSE, is a free monthly newsletter for health science professionals at the middle school, high school and collegiate levels.

Kim Smith, the author of *The Health Science Educator*, is an instructional designer and Certified Professional in Learning and Performance. She is a retired Registered Nurse and former Health Science Teacher, Health Science State Supervisor, and Assistant Director of National HOSA.

We’d love to hear from you! Send us an email and share your experience with using the ideas in this newsletter or let us know what you would like to see in future issues.